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Abstraci. The eigenvalues ofaprolatecavity (with axial symmetry) are studied zas a function 
of the deformation for an ellipsoidal shape by using the adiabatic switching method (ASM). 
The method uses, as the only quantum mechanical ingredients, trajectories which obey the 
Einstein-Brillouin-Keller (EBK) rules in the spherical case. The cavity is then adiabatically 
deformed and the energy change results from work done by the force exerted by the cavity 
on the particle. The resulting spectrum is in excellent agreement with the exact spectrum 
as well as with the semiclassical one calculated by the EBK method. The crossing of a 
separatrix for La = O  (LL is the z-component of the orbital angular momentum) does not 
affect our results significantly. The method is used to calculate the total energy of a system 
of independent nucleons as a function of deformation. Comparison with the Balian-Bloch 
formula shows that the ASM is producing correctly shell effects which are absent in the 
formula 

1. Introducfion 

The occurrence of regular and chaotic trajectories in bound systems with many degrees 
of freedom has renewed the interest for semiclassical methods. Indeed, these methods 
link classical and quantum mechanics and also provide some cheaper tools in order 
to find the highly excited energy spectra, even when the exact quantum calculation 
becomes very difficult to apply. In addition, semiclassical methods could give a deeper 
understanding of complicated systems owing to their classical origin. For bound 
Hamiltonian systems, most of the popular quantization procedures are based on the 
Einstein-Brillouin-Keller (EBK) [l] quantization method of phase-space tori. The 
problem with these approaches is to find the appropriate sets of initial conditions 
which correspond to some definite values for the actions of the system. 

Among the variety of methods [2], the adiabatic switching method (ASM), deduced 
from the Ehrenfest adiabatic hypothesis [3], was first proposed by Solov’ev [4] who 
has studied a two-dimensional anharmonic oscillator perturbed by cubic terms on 
coordinates. The basic idea was very simple: under slow changes of the panmeters of 
the system, certain quantities remain approximately constant, they turn out to be the 
classical actions. Practical use of ASM is thus very clear: if for a set of given values 
for the parameters of the system it is possible to satisfy the EBK quantization conditions, 
then the actions remain close to their initial values when these parameters are slowly 
varying while, at the same time, the trajectory is slowly changing. In principle, the 
validity of the adiabatic theorem in classical mechanics has been proven rigorously 
only for one-dimensional Hamiltonians. Nevertheless, the ASM has been extensively 
applied to various N-dimensional Hamiltonian systems, the phase space of which 
showed regular and chaotic regions [4-261. However, application of the ASM requires 
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in principle that two conditions are fulfilled: the classical tori in phase space must 
exist during the switching procedure and the switching time must be greater than any 
intrinsic period of the motion. Even though the first condition is not realized, the ASM 

has been extended with success to the quantization of mildly chaotic classical systems 
[6,10,11,13,14,19,24]. The latter condition does not allow change of the topology 
of the trajectory during switching and thus crossing a separatrix. In previous works 
[4-261, the energies obtained by using the ASM were found to be in very good agreement 
with those obtained by exact semiclassical calculations, or by solving the Schrodinger 
equation. It was shown also that randomly chosen initial conditions could remove the 
oscillations on the energy due to the finite value of the switching time. In a previous 
publication [8] on the single particle energies of a nuclear potential with spherical 
symmetry, we have also successfully used the ASM in order to calculate the energy 
levels as a function of the mass number from A = 208 (Pb) to A = 16 (0). The slowly 
varying parameter was the range of the potential. Obviously, the system was one- 
dimensional and we easily verified the validity of the ASM, for any intermediate value 
of the mass number, either by calculating the exact semiclassical solution or by 
comparison with the quantum eigenvalue. In the studies of two-dimensional systems 
quoted above, the invariance of the actions was most often postulated but not verified 
during the adiabatic switching. A small classical mechanical energy variance at the 
end of the switching was employed to measure the degree of convergence of the ASM 
calculation. 

The aim of this paper is to use the ASM in a simple but non-triviai example: we 
will folIow the eigenvalues of a prolate cavity with axial symmetry as a function of its 
deformation. This example is of interest because it is possible to calculate the intrinsic 
frequencies and the actions at each step and to analyse their variations in time. This 
system presents the property to be two-dimensional and integrable, therefore the 
variation of the actions during the adiabatic switching can be studied in a detailed 
way [27]. Its phase space is known [l8] to be organized differently according to the 
value of the projection Lz of the angular moinentum on the symmetry axis. If L, # 0 
the trajectories correspond to a unique topology while there are two topologies for 
Lz = 0. Therefore, for .C2 = 0 all the semiclassical eigenstates cross the separatrix for a 
value of the deformation which is exactly known [18]. The influence of these crossings 
on the validity of the method can be studied in the same manner. On the other hand, 
a prolate cavity is a simplified example of a deformed nuclear potential. Of course, 
the energy levels of a deformed nuclei have been studied for many years [28]. It is 
not so well known that most of their variation with deformation has a classical origin 
which can be revealed by using the ASM. In some of our previous work [8, 18,29,30], 
we have already studied the phase space structure of nuclear single particle potentials. 
This paper concentrates on a simplified version from which much can be learned. In 
particular, we study the total energy as a function of deformation of a system of 
nucleons in the cavity using the ASM. In this way shell effects occur and our result can 
be compared with the asymptotic formula of Balian and Bloch [31], well known in 
nuclear physics [32]. 

F Brut and R Aruieu 

2. Outline of the method 

The adiabatic switching method is clearly explained elsewhere for non-integrable 
Hamiltonian systems [22,24]. It has been developed to find semiclassical energy spectra 
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of non-integrable Hamiltonians as a function of internal parameters, such as the 
magnetic field. Let us just recall that the general principle is to start with a zero-order 
Hamiltonian which is integrable, the semiclassical energies of which are easy to find. 
The change in the energy levels that result originates from the classical work done on 
the particle during its motion. The aim of the method is to calculate suc.h changes 
which lead to splitting, crossing of levels and, as we shall see, to sheil effects. Of course 
these changes are also present in the EBK method but their physical origin1 is totally 
unpredictable. These energies are indeed obtained by searching the invariant tori in 
phase space which are labelled by the semiclassical actions which fulfil the EBK 
quantization conditions. Then, an adiabatic change on this initial Hamiltonian is made 
in order to reach, at the end of the switching, the required non-integrable Hamiltonian. 
Starting on a semiclassical torus of the zero-order Hamiltonian, the classical actions 
are conserved during adiabatic switching and labelled at any time the semiclassical 
tori. Obviously, these tori must exist throughout switching. Nevertheless somle previous 
works [19,24] have used the method for systems for which chaos exists but is not well 
developed in phase space. In a prolate cavity, as the motion of a free particle is always 
separable in suitable coordinates, there are only regular trajectories. Thus, in such a 
system, we would study the validity of the ASM in a non-trivial case without introducing 
other phenomenon like chaotic motion. The adiabatic condition implies that the 
switching time must be greater than any intrinsic periods of the system. Thus we are 
expecting that the method will fail if the topology of semiclassical trajectories is 
changing during the switching. More precisely, this means that passing through a 
separatrix, for which one intrinsic period of the motion becomes infinite, must in 
principle lead to the failure of the ASM. If, during the switching, two frequencies of 
the motion become rationally r e l a t e d 4  resonance region-it has been shown [22] 
that some of these primary resonance crossings are equivalent to separatrix crossings, 
even if the topology of the trajectory is not changed by the resonance. Therefore, 
resonance regions will induce some failure of the ASM, and this point will be clearly 
underlined by following thevalues ofthe actions as afunction ofthe switching time [U]. 

Motion of a free particle inside a prolate cavity is separable in spheroidal prolate 
coordinates: 

x = f sinh E sin 5 cos 4 
y = f sinh E sin g sin 4 
z = f cosh E cos 6 

f 2  = a2 - b2 

OS+S27r  

OS 6 s  7r 

O<&<OO (1) 

where the z axis is the symmetry axis of the cavity and 2f is its focal distance: 
. 

( 2 )  
a and b, the larger and smaller semiaxis, respectively, are related by the volume 
conservation condition; a condition which is traditional in nuclear physics: 

ab2=Ri=constant (3) 

R, is the radius of a sphere having the same volume. The deformation parameter is 

a 
t”=;.  (4) 

The equations of motion [32] give the canonical momenta p .  and pI  as a function 
of E and g respectiveiy, and also of p4 = Lz as well as the energy E and of a s.eparation 
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constant C. The energy E of the particle is written as 
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h2k2 E =- 
2m 

and the momenta are given by 

( 5 )  

where the separation constant C must be expressed in terms of the scalar product of 
the two angular momenta with respect to each focus [I81 as 

(6c) 

(Note: there is a misprint in equation (10) of [I81 in which the k2f term is missing.) 
Inside a prolate cavity, a generic trajectory with L, # 0 never crosses the z axis and 

is represented in figure 1 in cylindrical coordinates on a plane (p, z). In 3~ configuration 
space, a trajectory is obviously buiit by segments of straight lines limited by the bounces 
on the boundary. On the piane ( p ,  z ) ,  this trajectory is made by segments of hyperbolas 
(see figure 1). When one canonical momentum, ps or pc, becomes zero, the particle is 
on one of the two caustics. The first caustic is an ellipsoid homofocal to the boundary, 
and corresponds to p .  =O; the track of this caustic is the dotted line in figure I. The 
second one is a two-sheets hyperboioia, ais0 homofocal to the boundary, corresponding 
to pt =O; its tracks on the trajeaory plane ( p ,  z )  is represented in iigure 1 by dashed 
lines. These two caustics are consequences of the centrifugal barrier, as Lz is finite 

C = I, - f 2 +  k2f. 

N 

1.6 

0.8 

0.0 

-0.8 

-1.6 
0.0 0.4 0.8 

P 
Figure 1. Generic & # O  trajectory in a prolate cavity with a 2: 1 shape. The trajectory is 
represented in cylindrical coordinates ( p ,  z). The two dashed lines are the footsteps of the 
two sheets hyperboloidal caustic and the dotted line is the track of the ellipsoidal caustic. 
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and non-zero, as was discussed by Arvieu ef a1 [HI. For the trajectory shown in figure 
1, the coordinate E vanes between the two values defined by the ellipsoidal caustic 
and E ,  corresponding to the boundary. The angle could take any value between CO 
defined by the symmetry axis and the upper sheet of the hyperboloidal caustic, and 
T-&, corresponding to the angle between the z axis and the lower sheet of the 
hyperboloidal caustic. 

For the L, = 0 trajectories, one of the two preceding caustics disappears and merges 
in the symmetry axis. Thus two general topologies for the trajectories exist and are 
shown in figure 2. The trajectory is now represented in a meridian plane (x, z )  and 
thus could present an elliptical caustic or an hyperbolic caustic depending on the sign 
of 1,.  l2 [lS]. For L, = 0, the semiclassical energy levels could cross the separatrix 
between the two topologies and it is ourpurpose to see the applicability of the adiabatic 
switching method in the neighbourhood of the crossing. 

1.8 1.8 

0.8 . , 0.8 

N 0.0 N 0.0 

-0.8 -0.8 

-1.8 -1.6 
-0.8 0.0 0.8 -0.8 0.0 0.8 

X X 
Figure 2. Generic Lr = O  trajectories in a prolate cavity with a 2: 1 shape. Left: trajectory 
with an elliptical caustic. Right: trajectory with a hyperbolic caustic. 

Semiclassical quantization in a prolate cavity requires finding an initial condition 
which fulfils the EBK quantization conditions [ 11 for each set of quantum numbers 
(nlm) 1181: 

if we take the ‘primitive’ approximation and not a uniform quantization condition (see 
discussion in [lS], [33] and 1341 for more details). Obviously the two classical actions 
I, and It defined by (7) are function of the energy E and of the separation constant 
C, via the two canonical momenta p .  and p6 defined by (6 ) .  Solving the semiclassical 
quantization for a given set (n lm)  of quantum numbers consists of finding an initial 
condition or the energy and the separation constant which satisfies (7). This task, 
which will be done later, can be avoided if we are interested in a great number of 
single-particle energy levels. We can use instead the ASM. 



4754 F Brut and R Amieu 

Starting with a sphere of radius Ro, it is easy to find an initial condition on a 
semiclassical torus corresponding to the quantum numbers (nlm) [8, 351. Then, the 
sphere is adiabatically deformed to a prolate ellipsoidal shape, by holding the volume 
constant and by setting deformation time dependent 

where A(t) is the switching function which satisfies A(0) = 0 and A( T) = 1, where T is 
the switching time. The analytical form of the switching function was extensively 
studied by Johnson [7] and the most commonly used is 

( 9 )  

Now, the boundary equation of the prolate cavity becomes time dependent and the 
semiaxes are expressed as 

Let us assume that the particle is starting, at time to, on a point Mo(xo,yo, za) located 
on the boundary of the cavity. The velocity of the particle is then uo. The problem is 
now to find the time-of-flight t of the particle until it again hits the boundary at a 
point Ml(xl, y , ,  q), the coordinates of which are given by the equations of motion 
and by the equation of the boundary: 

OMl = OMo+ vo * t (111 

where the semiaxes a and b are time dependent and are defined by equations (8) and 
(10). When the time-of-Right t is numerically determined, the perfect reflexion laws 
in MI are written for the particle bouncing on the cavity wall. Let n, be the unit normal 
vector to the boundary in MI ; then, if the velocities of the particle before and after 
the bounce in M ,  are uj and U,, respectively, we have: 

(Ut - U,) A n1 = 0 (13a) 

(U,+ U, -2uJ f n, = 0 (136) 

where U ,  is the velocity of the boundary in MI. In the particular case of a prolate 
cavity, we could define U, by the scalar product 

(141 

with 
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and 

where p(t) is defined by (8). Obviously, when the particle is flying between MO and 
M,,  its energy remains constant. When it hits the boundary, its energy could suddenly 
increase or decrease by steps depending on the sign of the scalar product in (14). 

This method is applied to every semiclassical level in a prolate cavity. Starting with 
an initial condition on the semiclassical tori of the spherical cavity, the adiabatic 
switching ends when the deformation p in the prolate cavity reaches the value 2. The 
semiclassical energy levels can thus be followed during the switching procedure and 
the energies are drawn as a function of the deformation p. Comparison of the results 
obtained by using the ASM, on one hand, and quantum calculations as well as exact 
semiclassical quantization, on the other hand, is presented in the next section. 

3. Results 

The validity of the adiabatic approximation requires that the switching time T tends 
to infinity. The initial set of classical actions, which are defined for a spherical cavity, 
tag, in principle, the semiclassical levels of the deformed cavity during the switching 
procedure. However, in practical calculations, T is always finite, and thu:r the final 
energy obtained depends not only on the initial semiclassical actions, but also on the 
initial angles which are the conjugate variables of the actions. These angles are 
determined by the exact position of the initial condition on the surface of the starting 
semiclassical torus. In other words, the particle energy will be not only a function of 
the deformation and of the set of initial semiclassical actions, but also a function of 
these conjugate angles during the adiabatic switching. As the initial conditions are 
periodic in these angles, with a period of 27r, the energy dependence on the angles 
could be removed by averaging the energies obtained for each value of the deformation, 
by starting from different randomly chosen initial conditions laying on the same 
semiclassical torus. The averaging procedure should cancel the oscillating part of the 
semiclassical energies as was discussed by Skodje eta1 [6] and by Johnson [7]. Examples 
of such behaviours are shown in figure 3 for the particular Lz = 1 level stairting from 
the lg spherical multiplet. The energy of this level is obtained by an average over 25 
different initial conditions chosen at random; the value of the energy is given by (kRo)2 
where k and & are defined by equations (3) and (5). To emphasize the osdlation in 
figure 3, the preceding mean energy is subtracted from the energy obtained from only 
one initial condition at each value of the deformation. In figure 3 ( a )  the switching 
time T is relatively short to emphasize the amplitudes of the oscillations in each of 
these two different initial conditions. When the number of bounces of the particle on 
the cavity is increased, which is simply done by increasing the time T, the oscillation 
amplitudes SE decrease as shown in figure 3(b). This behaviour is generic for the 
energy during the switching and does not depend on any particular choice of the initial 
quantum numbers. These oscillation phenomena are present also when other dynamic 
quantities, such as the classical actions, are calculated during switching [27]. 
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O.Ol-, 0.01, 

4'0\*.6 -o.o'i.O I 1.2 1.4 I d  

P P 

Figure 3. Deviations from the average energy for some particular initial condition. The 
time evolution of the energy deviation of the L, = 1 level issued from the Ig spherical 
multiplet is drawn during adiabatic switching. Framer ( a )  correspond to two different 
initial conditions for only 140 bounces of the particle on the boundary during the switching 
time. Frames ( b )  correspond to 9200 bounces of the particle an the boundarv. Notice the 
change of the vertical s a l e  between (a )  and (b).  

Results are presented in table 1 for some of the low-lying states in the prolate cavity 
as a function of the deformation p. The method used to obtain the quantum spectrum 
in a prolate cavity was extensively discussed in [ 181 and [33]. The semiclassical energies 
ESc are calculated using the semiclassical quantization conditions given by (7). For 
this purpose, for a given set of quantum numbers (nlm) and for each value of the 
deformation p, a semiclassical energy E,, and a separation constant C must be found 
in order to fulfil simultaneously the semiclassical quantization rules. For each value 
of the deformation, the adiabatic switching energy EAsM is the result of the average 
over 25 particle energies obtained by running trajectories starting on the same semi- 
classical torus. For the prolate cavity, it is also possible [27] to calculate the classical 
actions of the particle, their averaged values and 4 are shown in table 1 and must 
be compared to their initial values-for p=O-which should be exactly invariant 
during the switching. The comparison with the initial'values is a delightful proof of 
the validity of the ASM in this problem. The switching time function given by ( 9 )  is 
used with the same switching time T, for all the energy levels reported in table 1. Of 
course, the number of bounces of the particle inside the cavity during switching 
increases with the energy of the particle. First, we must note that the adiabatically 
switched energy EAsM is in excellent agreement with the exact semiclassical energy 
ESC. Second, the relative deviation between the semiclassical E,, and the exact quantum 
calculations EQ, which is given by the sixth column in table 1, is of the same order 
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Table 1. Energy eigenvalues for some levels in a prolate cavity as a funexion of the 
deformation. 

(1,S.O) 1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

(1,5,5) 1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

(1,5,2) 1.0 

87.3512 86.8567 
84.2153 83.6760 
80.3945 80.0913 
763135 76.2882 
72.2796 72.3852 
68.5193 68.4432 
65.1276 64.4308 
62.1160 60.6274 
59.4593 57.6566 
57.1196 55.1910 
55.0581 53.0987 
87.3512 86.8567 
85.6854 85.0252 
83.9727 83.2402 
82.5621 81.7160 
81.4788 80.5308 
80.6940 79.6745 
80.1656 79.1026 
79.8522 78.7656 
79.7174 78.6200 
79.7309 78.6300 
79.8677 78.7671 
87.5312 86.8567 
92.0019 91.1753 
96.4252 95.5122 

100.7908 99.8223 
105.0938 104.0850 
109.3327 108.2913 
113.5078 112.4378 
117.6204 116.5239 
121.6726 120.5505 
125.6664 124.5194 
129.6042 128.4324 

86.8567 
83.6754 
80.0898 
76.2864 
72.3828 
68.4412 
64.4286 
60.6258 
57.6545 
55.1888 
53.0965 
86.8567 
85.0248 
83.2394 
81.7157 
80.5304 
79.6749 
79.1044 
78.7680 
78.6231 
78.6338 
78.7715 
86.8567 
91.1760 
95.5133 
99.8235 

104.0862 
108.2924 

116.5248 
120.5513 
124.5198 
128.4324 

iiz.4388 

6xlO-I 
6x10-’ 

3 x 10- 
4~ 10-3 

1 x 10-~ 
1 x 10-3 
1 x 10-2 
2 x 10-2 
3 x 10-2 
3 x 10-2 
4 x 1 0 4  

8 x 10-3 
9~ 10-3 
1 x 10-2 
1 x 10-2 
1 x 10-2 
1 x 10-2 
1 x 10-2 
1 x 10-2 
1 x 10-2 
1 x 10-2 
6 x lo-’ 
9 x 10-1 
9 x 10‘’ 
1 x 10-2 
1 x 10-2 
1 x 10-2 

9 x I O P  

6 x 10” 

9x10-3 

9x10-3 
9~ 10‘’ 
9x10-3 

0.750 00 
0.749 $8 
0.749 98 
01749 98 
0.749 93 
0.749 95 
0.750 02 
0.75000 
0.750 1 4 ~  
0.750 15 
0.750 19 
‘0.750 00 
0.749 96 
0.750 01 
0.749 97 
0.749 94 
0.749 74 
0.749 73 
0.749 76 
0.749 76 
0.749 75 
0.749 75 
0.750 00~ 
0.750 03, 
0.750 03 
0.750 03 
0.750 03 
0.750 03 
0.750 03 
0.750 02 
0.750 02 
0:750 01 
0.750 00 

5.50000 
5.499 99 
5.499 93 
5.499 92 
5.499 93 
5.499 78 -23 000 
5.499 59 
5.499 81 
5.499 46 
5.499 48 
5.499 49 
3.500 00 
3.50006 
3.499 91 
3.50000 
3.500 18 
3.501 01 =28 800 
3.501 07 
3.50092 
3.50095 
3.501 01 
3.501 01 
0.500 00 
0.499 99 
0.500 02 
0.500 02 
0.500 02 
0.500 01 536 300 
0.500 02 
0.500 02 
0.500 01 
0.500 02 
0.500 01 

’ Quantum-mechanical calculations [18, 331, 

‘Present results: adiabatic switching method for an average over 25 different initial conditions. 

=hesent  results: the actions I, and I ,  are averaged over 25 different initial conditions for m =‘O, and oveI 
o d y l O f o r m = Z o r 5 .  
‘Approximate number of bounces ofthe particle during the full switching. 

Present results: exact semiclassical calculations using’the quantization prescription given by equations (7). 

Relative deviation AE = IE,- Escll_EQ. 

of magnitude in a prolate cavity as it was in a spherical cavity. Third, it must be 
emphasized that the calculation of an eigenvalue using the exact semiclassical method 
is five to six times longer than the corresponding calculation using the ASM; quantum 
calculations [18,30] require a computational time which is often longer than the exact 
semiclassical calculations, especially for high energy eigenvalues for which the basis 
truncature is a crucial problem. 

The adiabatically switched energies for the L, = O  levels are of special interest due 
to the existence of a separatrix which is crossed often during switching. ’&%en the 
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shape of the cavity is adiabatically changed, the semiclassical trajectory begins with 
an elliptical topology (see figure 2(a)) ,  then crosses the separatrix for a precise value 
of the deformation pscp [18], and afterwards ends with an hyperbolic topology (see 
figure 2 ( b ) ) .  In principle, the adiabatic hypothesis must fail for this particular value 
pJcp as one of the intrinsic periods of the system tends to infinity. The results reported 
in table 1 concern only levels belonging to the l h  multiplet in the spherical cavity. 
For other multiplets, the same general features can be observed and the following 
conclusions are generic for a prolate cavity. For the L, = 0 level shown in table 1, the 
separatrix crossing occurs for psep = 1.6166, and for deformations close to this value, 
the agreement between exact semiclassical results and those obtained by using the ASM 

is as good as it is for other deformation values. Such surprising behaviour has already 
been observed in other systems [6,13,16,22], and can be easily understood here, at 
least qualitatively. In fact, when the trajectory crosses the separatrix and changes its 
topology, the particle is flying somewhere inside the cavity, between two successive 
bounces on the boundary. In other words, the crossing region is traversed diabatically 
rather than adiabatically, in almost any case. This separatrix crossing is studied 
numerically when the time evolution of the energy as well as that of the classical 
actions, is followed during the switching procedure [27]. 

As we have already seen for the quantum single-particle energy spectrum in a 
prolate cavity [HI, all the spherical multiplets are split in the same way by the axial 
deformation. Some of these splittings are shown in figure 4. The energies change 
smoothly with deformation, the levels are simply ordered by increasing Iml. This 

F Brut and R Aruieu 

(a) (b )  

\ w 20.0 w 40.0 
1.0 1.2 1.4 1.0 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0 

P f-6 

(4 (4 
isao 

96.0 

60.0 W 140.0 
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.7. 1.4 1.6 1.8 2.0 

P P 
Figure 4. Examples of energy splittings in a prolate cavity, obtained by the ASM, for the 
Id (a), lg ( b ) ,  l h  ( e )  and 3d ( d )  spherical multiplets. Each of these curves is obtained 
by averaging the classical energy of 25 trajectories. 



Semiclassical theory of the eigenvalues of a prolate cavity 4759 

behaviour is correctly predicted by perturbing trajectories using the classical perturba- 
tion theory with spherical symmetry. Indeed, let .Eo be the energy of a free particle 
inside a spherical cavity of radius Ro. Holding a constant volume and an axial !symmetry 
along the z direction, let us give a small deformation d p  along the z axis of the cavity. 
The coordinates are now 

x’= x(1- f dp)  

y ’ = y ( l  -f dp) 

z‘ = z( 1 + $ dp). 

The conjugate momenta are changed to 

P X  

1-2 d p  
p: = -=px( 1 + f dp)  

Thus, the energy becomes, in spherical coordinates 

E’= Eo[1-$P2(cos 8) dp]. (19) 

In this equation we must average P2(cos 6) over all the possible orientations of the 
momentum p.  For the L, = 0 levels, all the values of 6 between 0 and 27r could be 
reached; therefore (cos2 8) = f. 

For the LE # 0 levels, the argument is more involved. Let the angular momentum 
L be in the plane yoz. The particle momentum p is evolving in a plane which is 
perpendicular to L and which makes an angle LY with the z axis. The equation of this 
plane can be written in spherical coordinates as a function of L and L,. The mean 
value (cos’ e), calculated on the hodograph of the motion, takes the fomq after a 
straightforward calculation 

where 

The perturbed semiclassical energy is finally given by 

E‘ = Eo( 1 +- dp) 

a form similar to the quantum one where 
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for any Inh) eigenstate. Therefore, the straight lines which are tangent to each single 
energy level, have slopes which range from: 
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E'-Eo 
-I I - - ~ d p  for L, = 0 levels 

Eo 
to 

E'-Eo -- -8  d p  for L. = t levels. 
EO 

Thus, for small axial deformations, semiclassical calculations are consistent with 
quantum ones. It must be noticed that the preceding result is quite general and can 
be applied to any axially deformed systems, Hamiltonian or not, and to any trajectories 
having the same starting energy for the spherical shape. Moreover, we can deduce 
from the preceding equations that the minimum energy is obtained for prolate ( p >  l), 
oblate ( p  < 1) or spherical ( p  = 1) shapes respectively for L, < L/&, L, > L/& and 

Figure 5 shows the complete single particle energy spectrum, up to an energy of 
E =250 in units hZ/2mR$, in a prolate cavity, using the ASM, based on classical 
trajectories. For each level, 25 randomly chosen initial conditions are used to calculate 
the averaged energy, and the switching time T is fixed by requiring at least a thousand 
bounces on the boundary during~ the variation of the deformation. As the system 
remains integrable for any value of deformation, there are true crossings of the energy 
levels and no avoided crossing. This spectrum could be used as a basis for the study 
of the total energy of non-interacting Fermi-Dirac particles as a function of the 
deformation. 

The single energy spectrum we will use is made of 323 single levels including the 
third I = 9 spherical multiplet. When the deformation increases, each spherical multiplet 
is split, as discussed above. Thus for each filling of the single levels we must be sure 

L, = L/& 

I 
'1.0 1.2 1.4 1.6 1.8 2.0 

P 
Figure 5. Single energy spectrum in a prolate cavity obtained by using the adiabatic 
switching method. Ail values of L= are represented. This spec"  is similar to a Nilsson 
spectrum, without any spin orbit term, which is extensively used in nuclear physics. 
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that any level which is not yet included in our truncated basis does not come from 
high energy and is inserted among the lowest levels of the spectrum. These missing 
levels should have an angular quantum number, l, as high as possible, and L, = 0. To 
avoid such a difficulty, we have included in the truncated basis the L, = 0 level starting 
from the first I =  15 spherical multiplet, which is at an energy of 267.76 hZ/2mRi for 
a deformation p = 2. The filling of this level should require considering 245 spinless 
particles for this value of the deformation, far beyond the number of particles we 
actually consider. Comparison of such a calculation with pure quantum proiiction is 
done in the next section. 

4. Total energy of N identical nucleons 

The single particle energy spectrum, obtained by the ASM, may be used to study the 
total energy of an assembly of N non-interacting Fermi-Dirac spinless particles, as a 
function of the deformation, in a prolate cavity. For each value of the deformation, 
323 basis levels are ordered by increasing energy, the lowest levels are then filled by 
one particle if the corresponding Lz value is zero and by two particles if Lz is different 
from zero, until the total number N is reached. This procedure d e h e s  a minimum 
energy configuration for a given value of the deformation. Of course, the filling of the 
levels could remain the same for a short range of deformation, but for each value of 
the deformation, the minimum energy configuration has to he found. Figure 6 shows 
the total energies for four different particle numbers. Each parabole-like curve is 
associated to one particular N-particle configuration which becomes the minimum 
energy configuration for some value of the deformation. Only the configurations having 
this property have been represented. The general shape of these curves was obtained 
long ago by Hill and Wheeler [36],  for a rectangular box deformed at constant volume 
and filled by 60 spinless Fermi-Dirac particles. In order to obtain the ground state 
energy, in the deformation range under study, it is necessary to include only 10 different 
configurations for N = 46, but 36 different configurations for N = 220. In this latter 
case, the last filled level for a deformation p= 2 is at an energy around 250fi2/2mRi. 
In this energy region, we are sure that there is no intruder single particle level which 
should come from higher energy and which is not yet included in our truncated basis. 

The envelope of the semiclassical curves can be compared with quantum calculation 
using the asymptotic formula given by Balian and Bloch [31], for the average density 
of eigenvalues p ( k ) ,  inside a cavity with Dirichlet conditions on the boundary. If k is 
the wavenumber, V ,  S and K ,  respectively, the volume, the surface and the curvature 
of the cavity, then 

k2V kS K 
p ( k ) = - - - + -  

27r2 8a 1 2 ~ ' '  

For a cavity filled up to the Fermi level kF by N non-interacting particles the total 
minimum energy is 

E = - L  f i 2  k 5 V [  1 57rs 1 +--- 5 K I ]  
2m 1 0 d  16 V kF 18 V k: 

with 
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Figure 6. Total energy of N non-interacting Fermi-Dirac spinless particles in a prolate 
cavity as a function of the deformation @. The dashed curve corresponds to a pure quantum 
calculation. For further details, see text. 

A straightforward calculation gives the minimum energy E in units of h2/mRi  as a 
series in powers of N: 

(26) 
where a is a constant not yet known analytically, E ,  and BK express the deviations 
from the sphere of the surface and the curvature terms of a prolate cavity [37]: 

1 sin-’ e 
- 2 e2)1/3 11 + e(1 -e2)1’2 

B$ = 

2(1 2e 
B K  = 

with e‘ = 1 -,LZ. 
The smooth average total energy given by equation (34) is represented in figure 6 

by a dashed line, for each particle number. The absolute position of the curve is fixed 
by the total semiclassical energy for the spherical cavity, and therefore the unknown 
constant a, in (34), is determined by the exact semiclassical energy. The corresponding 
quantum energy would be, in any case, larger than the preceding one, the relative 
difference would be a few per cent. The semiclassical ground state energy, which is 
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given by the envelope of all the parabole-like curves, has the same global trend as the 
pure quantum calculation when the deformation increases. The best agreement. between 
the two different approaches is obtained for N = 220, where the quantum minimal 
energy merges into the semiclassical envelope. Nevertheless, for the other particle 
numbers shown in figure 6,  some deviations between the two calculations must be 
explained. In fact, these deviations are easily understood by looking at shell effects 
which occur by filling the single levels of the energy spectrum shown in figure 5. Let 
us consider, for example, the case with 46 particles. Starting from the spherical cavity, 
the latest occupied level is the 3s singlet, the energy of which is around !?O in the 
proper unit used in figure 5 ,  and the lowest unoccupied levels are the 2f- l i  niultiplets 
around an energy of l101i2/2mR& Thus, N=46 corresponds to the closure of a 
spherical shell and the minimal configuration remains the same when the deformation 
increases until a value p = 1.2 (see figure 5) .  For a larger deformation, the L, = 0 level 
starting from the 2f spherical multiplet crosses one of the levels already occupied and 
thus the minimal configuration is changed as well as the ground state energy. For 
higher deformations, the splittings of the 2f- l i  multiplets induce other crossings of 
the single particle levels and the minimal configuration is changed as the deformation 
increases. For N =46,  the closure of the spherical shell corresponding to the filling of 
the 3s singlet leads to an equilibrium shape which does not have exact :spherical 
symmetry, but a small prolate shape around p F= 1.05. The closure of the spherical shell 
is clearly underlined by the appearance of a bump on the semiclassical envelope 
between p = 1.2 and /I = 1.6. For N = 53, the behaviour is different, as shown in figure 
6;  here, we choose a particle number which corresponds to the following filling in the 
spherical cavity: the 2f multiplet is fully occupied, but almost at the same energy lies 
the l i  multiplet which is unoccupied (see figure 5 ) .  This case corresponds to an open 
shell which is closed for N = 69 by filling all the single levels in a spherical cavity up 
to an energy of 120h2/2mR& Therefore, for a small prolate deformation, the sptitting 
of the l i  multiplet, according to the results obtained in the previous section, mixes all 
its levels with those coming from the 2f multiplet. This splitting and mixing allows 
the system to find, for a small deformation, a lowest ground state configuration by 
filling the levels coming from the l i  multiplet. This fast change in the filling over a 
small deformation range explains why the equilibrium shape is obtained for a prolate 
deformation around p=l.23. The same discussion can be had for N=190  which 
corresponds also to an open shell between the shell closures at N = 169 and N = 199, 
corresponding to the single particle energies around 200 and 225, respectively, in the 
energy unit used in figure 5 .  The final case shown in figure 6,  i.e. N = 220, corresponds 
to the filling of all the energy levels under 250h2/2mRi, in spherical symmetry, and 
is quite similar to N = 46, but with many more minimal configurations which obliterate 
almost all the shell effects. The semiclassical analysis of the shell effects and the 
oblate-prolate asymmetry in nuclei was carefully analysed by H Frisk 1381 by using 
the periodic orbit theory of Gutzwiller [39].  In this work, it was shown that the lengths 
of the most important periodic orbits remain almost constant in a spheroidal oblate 
cavity although these lengths vary for a prolate defoimation. Consequently, an energy 
minimum region arises for a prolate deformation around p = 1.3, which is also seen 
in our approach, for almost any number of particles. 

Now, if we consider an oscillating boundary around a fixed deformation, the curves 
presented in figure 6 allow us to calculate the dissipation energy rate of the system. 
Indeed, if the particles do not have the necessary time to minimize their tot2.1 energy 
during the oscillation, they remain in the same configuration and the dissipation energy . 
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is estimated by the corresponding parabole-like curves. On the contrary, if the oscillation 
is adiabatic, then the dissipation rate is given by the smooth envelope. 
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5. Conclusion 

We have shown in this paper that the ASM is able to reproduce, within a good 
approximation, the variation of the energy levels of a prolate cavity with deformation. 
It is important to note that quantum mechanics (or wave mechanics since the problem 
of the eigenmodes of the cavity occurs also outside the frame of quantum mechanics) 
determines the values of the actions Is and I f  and the eigenspectrum only for /I = 0. 
The behaviour of the energy levels as a function of /L is, however, determined only by 
classical mechanics during the adiabatic switching of the deformation. Table 1 shows 
that the ASM is a very good approximation when compared with the exact calculation. 
Therefore the shell effects which arise when summing up the energy levels as in figure 
6 are indeed effects which do result from the classical evolution with deformation. The 
formula given by Balian and Bloch erase those effects as we have clearly shown here. 

The variation of the spectrum with a parameter adiabatically switched has been 
calculated previously in other cases, for example in [6,7] for the case of a Henon- 
Heiles-like system or for the case of the Hecht Hamiltonian [lo]. In none of these 
cases is the usefulness of the method to build up shell effects detected. For further 
details on the method one should read the review by W P Reinhardt [40]; another 
paper [27] provides more details about conservation of the actions and the resonances. 
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